
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

A Scripting language for Digital Content Creation Applications

Mohammed Yousef, Ahmed Hashem, Hassan Saad, Amr Gamal, Osama Galal∗, and Khaled F. Hussain†

Faculty of Computers and Information, Assiut University, Assiut, Egypt

Figure 1: from left to right, (a) a sphere with bevel on faces of 5 sides then Catmull-Clark subdivision (b) a spring with bend on Y axis (c) a
torus with taper on Y axis (d) Cloth(red) covering a torus(green) after tapering it during a physics simulation.

1 Introduction

Digital Content Creation (DCC) Applications (e.g. Blender, Au-
todesk 3ds Max) have long been used for the creation and edit-
ing of digital content. Due to current advancement in the field,
the need for controlled automated work forced these applications
to add support for small programming languages that gave power
to artists without diving into many details. With time these lan-
guages developed into more mature languages and were used for
more complex tasks (driving physics simulations, controlling par-
ticle systems, or even game engines). For long, these languages
have been interpreted, embedded within the applications, lagging
the UIs or incomparable with real programming languages (regard-
ing Completeness, Expressiveness, Extensibility and Abstractions).
Two approaches were used to implement those languages. Either
build them from scratch (like MaxScript), or use an existing popu-
lar language and write a set of extensions to it and embed it (like
Blender and Python). In practice, both those solutions suffer, the
first method produces languages lacking being real, competitive
languages and generally very inefficient, the second method has
problems arising from not being dedicated in first place for that kind
of applications so, they lack expressiveness facilities (like dedicated
constructs) that support that particular domain, also it’s very hard
to optimize these languages for specific DCC situations.

In this paper, we present a system that addresses those problems.
A high level scripting language (Zlang) and a DCC Engine, the
language can be interpreted, compiled, extended in C/C++ and has
a number of constructs and optimizations dedicated to DCC do-
main. The engine provides geometric primitives, mesh modifiers,
key-framed animation and Physics Simulations (Rigid/Soft Body,
Cloth and Fluid Simulations), the engine also is designed and im-
plemented as a library so it can be used alone and embedded.

2 TECHNICAL APPROACH

In the DCC engine, we store meshes in a half-edge data structure.
Two classes of algorithms for constructing primitives are used, ei-
ther sculpturing (using Euler operations) or connecting generated
point sets into faces. Mesh modifiers operate on half-edges to
achieve required effect; they either operate per face (like Extrude
and Outline) or on the whole mesh (like Twist and Bend). Every
object has a stack of modifiers that are applied to it in order. To
produce animation, key-frame values are given to modifier proper-
ties, these values are then interpolated so that each property of each

∗e-mail: {mohamed.mahdi, ahmed.ali, hassan.rezg, amr.abdelhafiz, us-

ama.mohamed}@compit.au.edu.eg
†e-mail: khaled.hussain2000@gmail.com

modifier has a value at a given frame, applying modifiers on copy
of meshes at each frame produces the animation. We use a scene
graph data structure for managing the scene.

We provide algorithms for representing our objects accurately as
convex shapes in physics simulations and use ACD [ming Lien
and Amato 2007] for approximating general shapes to convexes.
A unique feature we provide is deducing convex decomposition of
our concave primitives depending on their half-edge structure; this
allows efficient and accurate representation of complexly modified
primitives in physics simulations (e.g. a tube that is bended and
twisted to form a pipe, or as used in Figure 1(d) ).

Our scripting language is dynamic, memory managed and object
oriented (hybrid paradigm). An interpreter is provided for the lan-
guage with an interest that Zlang scripts be as standalone as possible
and cross platform. The interpreter focuses also in optimizing DCC
objects creation and array creation and manipulaion.

3 IMPLEMENTATION AND FUTURE WORK

In choosing tools for the system we focused on high performance
open source or free, cross platform tools with large communities.
We used CGAL Polyhedron [Kettner 2010] for storing meshes.
GSL is used for interpolating values for key-framed animation us-
ing cubic splines. Eigen libray is used for efficient matrix manip-
ulation. OpenSceneGraph is used for managing the scene graph
and other effects (e.g. lights). We used PhysX as a physics engine
(we preferred it over Bullet due to its current GPU acceleration).
ANTLR [Parr and Quong 1994] is used as a parser and lexer gen-
erator, in interpretation; the syntax tree is optimized, traversed and
executed. For the future we are now working on two sides. First we
are implementing parts of our system in OpenCL (especially global
modifiers). Second we are developing a Compiler for Zlang using
LLVM as a backend as we are aiming at standalone interactive sim-
ulations.

References

KETTNER, L., 2010. 3d polyhedral surfaces. CGAL Editorial
Board - 3.6 editions.

MING LIEN, J., AND AMATO, N. M. 2007. Approximate convex
decomposition of polyhedra. In Proceedings of the ACM Sym-
posium on Solid and Physical Modeling, ACM, 121–131.

PARR, T. J., AND QUONG, R. W. 1994. Antlr: A predicated-ll(k)
parser generator. Software Practice and Experience 25, 789–
810.


